Description:
A chemical synthesis that modifies PAHs via addition of perfluoroalkyl groups. The resulting compounds are novel organic semiconductors with potential application to flexible OLED displays and organic photovoltaics (OPVs).
At a Glance
- Chemical synthesis that controllably adds perfluoroalkyl groups to nearly any polycyclic aromatic hydrocarbon (PAH).
- Resulting compounds are novel organic semiconductors with advantageous and customizable electronic properties.
- Application to flexible electronics such as OLED displays and organic photovoltaic solar cells (OPVs).
Detailed Description
The laboratory of Dr. Steven Strauss has been a pioneer in the field of fluorination and perfluoroalkylation chemistry for over a decade. They have become world experts in the fluorination of various forms of “nanocarbon”, in particular fullerenes (aka buckyballs) and more recently a class of compounds known as polycyclic aromatic hydrocarbons (PAHs). To be useful, PAHs must be chemically altered so as to optimize their electronic properties. Typically, these reactions are difficult to control, expensive, and result in highly impure products.
The Strauss group has developed a perfluoroalkylation synthesis technique that is easily controlled and is highly selective – thus it results in very pure products. The method is general and can be used to modify a wide variety of PAHs. The procedure is a one-step reaction that does not require a solvent (is thus a very “green” chemistry).
In addition to a novel synthesis technique, this technology has opened the door to a whole new class of compounds, most of which can be patented as novel compositions of matter. Excitingly, these modified PAHs behave as organic semiconductors with electronic properties that appear to be well-suited for the light absorbing component of organic photovoltaic.
Broadly, organic semiconductors represent a large emergent market segment that promises to bring a new revolution of flexible and cheap consumer electronics and conformal power generation devices (solar cells that can be easily mounted on curved surfaces, such as cars, buildings, and any large structures). Commercial devices based on organic light emitting diodes are already available (smartphones and large displays by Samsung and Sony and even head-mount displays by Zeiss).
This technology has clear application in the area of organic electronic devices, including highly energy efficient OLED technology and OPV. Organic electronics are attractive to industry for many reasons and may be especially vital to the emerging area of flexible electronics. OLED technology is already a global industry.