CATEGORIES

Digital Electrochemical Impedance Spectroscopy Device for Benchtop Instrumentation and Mobile Detection

Description:

A digital electrochemical impedance spectroscopy (EIS) device that overcomes limitations of conventional analog EIS instrumentation. Compact and low power with better signal-to-noise. Well suited for a variety of mobile or in-the-field applications, such as pathogen detection, as well as in conventional benchtop systems.

 

At a Glance

  • Digital EIS device that is superior to conventional analog EIS instrumentation
  • Composite waveform is stored digitally and delivered as an analog signal
  • Onboard signal acquisition with signal-to-noise reduction for improved sensitivity
  • Excellent results from a miniaturized, low power and low cost device
  • Well-suited for mobile and field applications

 

 

Detailed Description

Interest in low cost and highly mobile detectors with digital output is extremely high, due partially to the anticipation of an Internet-of-Things. Electrochemical methods of detection are inherently suitable for low cost and miniaturization and offer an attractive alternative to traditional methods for pathogen detection (e.g., polymerase chain reaction – PCR) and other uses as they do not require expensive equipment or specialized reagents. Electrochemical impedance spectroscopy (EIS) is an electrochemical technique with particular potential.

Standard EIS employs equipment that performs a linear sweep of an analog signal through the desired frequency range. Not only is the equipment physically bulkier than the standard digital equipment of today, but the frequency range accessible to the analog equipment is limited on the low end of the frequency spectrum by the poor signal-to-noise intrinsic to this region of the spectrum. Additionally, the need to perform a linear frequency sweep slows the rate of signal acquisition. The slow rate limits the use of EIS in certain experiments and prohibits the use of certain techniques to improve signal-to-noise. 

Researchers in the Department of Electrical & Computer Engineering at Colorado State University have developed a digital signal generation and acquisition device overcomes the limitations of analog equipment. The device uses digital techniques to store multi-frequency input stimuli of different frequency ranges and uses the state-of- the-art digital-to-analog conversion to generate the required analog stimuli. The resulting circuit can be integrated on a single chip, making it less susceptible to noise, reducing size and cost of future EIS products.

Part of the innovation lies in the sophisticated composite signal employed, which combines 32 sinusoidal signals of varying frequencies between 2 Hz and 2 kHz and incorporates an offset in order to lower the crest factor for the signal. The signal is stored digitally but delivered as a single analog composite signal. Other composite signals may be readily used.

Another aspect of the innovation lies in the onboard signal-to-noise reduction that dramatically reduces the flicker noise that is inherent to the low end of standard EIS frequency ranges. Incorporated directly into the circuit design, the result is a measurement with low end sensitivities superior to bulkier analog equipment.

 

Patent Information:

App Type Country Serial No. Patent No. File Date Issued Date Expire Date

For Information, Contact:

Mandana Ashouri
CSU Ventures, Inc.
 

Inventors:

Keywords: